Prevention of normally occurring and deafferentation-induced neuronal death in chick brainstem auditory neurons by periodic blockade of AMPA/kainate receptors.
نویسندگان
چکیده
The role of glutamate receptors in regulating programmed neuronal death and deafferentation-induced neuronal death in the brainstem auditory nuclei was studied by in ovo drug administration to chick embryos. The nucleus laminaris (NL) undergoes programmed developmental cell death of 19% between embryonic day 9 (E9) and E17. The AMPA/kainate receptor antagonist CNQX, when administered at doses of 200-300 microg/d from E8 to E15, prevented programmed neuronal death in NL through at least posthatching day 8, without producing anatomical or behavioral abnormalities. 3-((RS)-2-Carboxypiperazin-4-yl)-propyl-1-phos-phonic acid, an antagonist of NMDA receptors, had no effect on normal cell death in the NL. CNQX, given from E8 to E15 or only from E8 to E10, also blocked the 33% neuronal loss in the nucleus magnocellularis (NM) that follows surgical destruction of the otocyst on E3, a procedure that deafferents NM neurons by preventing formation of the cochlear nerve. Treatment either with CNQX or the more highly selective NBQX from E8 to E10, before the onset of synaptic transmission in NM and NL, was also effective in preventing normal neuronal death in NL. Analysis of the effects of CNQX or NBQX on spontaneous embryonic motility at E10 showed that the doses effective in preventing neuronal death suppressed motility for <8 hr. We conclude that periodic blockade of AMPA/kainate receptors can protect CNS neurons against subsequent programmed cell death or deafferentation-induced death.
منابع مشابه
Developmental characteristics of AMPA receptors in chick lumbar motoneurons.
Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regul...
متن کاملIncreased deafferentation-induced cell death in chick brainstem auditory neurons following blockade of mitochondrial protein synthesis with chloramphenicol.
Second-order auditory neurons in nucleus magnocellularis (NM) of the chick brainstem undergo a series of rapid metabolic changes following unilateral cochlea removal, culminating in the death of 25% of NM neurons. Within hours of cochlea removal, ipsilateral NM neurons show marked increases in histochemical staining for the mitochondrial enzymes succinate dehydrogenase and cytochrome oxidase (C...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملRegulated expression of surface AMPA receptors reduces excitotoxicity in auditory neurons.
Dynamic regulation of the expression of surface AMPA receptors (AMPARs) is a key mechanism to modulate synaptic strength and efficacy in the CNS and also to regulate auditory sensitivity. Here we address the role of surface AMPAR expression in excitotoxicity by blocking clathrin-mediated AMPAR endocytosis in auditory neurons. We used a membrane-permeable, dynamin-derived, myristoylated peptide ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 12 شماره
صفحات -
تاریخ انتشار 1997